Announcements

1) Practice Problems for Quiz 2 up (Quiz 2 this Thursday)
a) HW 3 redo - solve problem
\#2 by hand, using variation of parameters, up to the point where you find the form of $u^{\prime}(t), v^{\prime}(t)$. Use your favorite resource to solve for u, v, find the particular solution. Ore in one week!
2) Exam 2 Tuesday next week (tentatively)

Example 1: Solve

$$
t^{2} y^{\prime \prime}+3 t y^{\prime}+y=0
$$

We assume $y=t^{r}$ for some real number r

$$
y^{\prime}(t)=r t^{r-1}, y^{\prime \prime}(t)=r(r-1) t^{r-\alpha}
$$

Substitute back into equation.

$$
r(r-1) t^{r-2}\left(t^{2}\right)+3 t r t^{r-1}+t^{r}=0,
$$

so

$$
t^{r}\left(r^{2}-r+3 r+1\right)=0
$$

Simplifying,

$$
t^{r}\left(r^{2}+2 r+1\right)=0
$$

This holds for all t only When

$$
\begin{aligned}
& r^{2}+2 r+1=0 \\
& (r+1)^{2}=0 \\
& r=-1
\end{aligned}
$$

So $\quad y(t)=C t^{-1}$ is one solution.

Since the equation is second degree, we expect there to be a second solution that is linearly independent from the first. Can we find it?

Standard form
Given a second order equation of the form

$$
a(t) y^{\prime \prime}+b(t) y^{\prime}+c(t) y=f(t)
$$

we may assume $a(t) \neq 0$ (at least "most" of the time). We can then divide the equation by $a(t)$ to produce

$$
y^{\prime \prime}+\frac{b(t)}{a(t)} y^{\prime}+\frac{c(t)}{a(t)} y=\frac{f(t)}{a(t)}
$$

Setting $p(t)=\frac{b(t)}{a(t)}, q(t)=\frac{c(t)}{a(t)}$, and $h(t)=\frac{f(t)}{a(t)}$, we arrive at the Standard form of the equation:

$$
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=h(t)
$$

Let's put

$$
t^{2} y^{\prime \prime}+3 t y^{\prime}+y=0
$$

in standard form. Dividing by t^{2}, we get

$$
y^{\prime \prime}+\frac{3}{t} y^{\prime}+\frac{1}{t^{2}} y=0
$$

So $p(t)=\frac{3}{t}, q(t)=\frac{1}{t^{2}}$

Another outrageous trick:

If y_{1} is a nonzero solution, then

$$
y_{2}(t)=y_{1}(t) \int \frac{e^{-S p(t) d t}}{\left(y_{1}(t)\right)^{2}} d t
$$

is a second, linearly inge pendent solution

Plug our functions in:

$$
\rho(t)=\frac{3}{t}, y_{1}(t)=\frac{1}{t}
$$

$$
\begin{aligned}
& T_{\text {hen }} e^{-\int \frac{3}{t} d t} \\
&= e^{-3 \ln (t)} \\
&= t^{-3}, \text { and so } \\
& y_{2}(t)=\frac{1}{t} \int \frac{\left(\frac{1}{t^{3}}\right)}{\left(\frac{1}{t}\right)^{2}} d t
\end{aligned}
$$

So

$$
\begin{aligned}
y_{2}(t) & =\frac{1}{t} \int \frac{1}{t} d t \\
& =\frac{\ln (t)}{t} \text {, so }
\end{aligned}
$$

a general solution to the equation is

$$
y(t)=C_{1} \frac{1}{t}+C_{2} \frac{\ln (t)}{t}
$$

Theorem: (solutions)
Suppose that $p(t), q(t)$, and $h(t)$ are continuous on an interval (a, b) that contains the point to. Then there exists a unique solution $y(t)$ to the initial value problem

$$
\begin{gathered}
y^{\prime \prime}(t)+p(t) y^{\prime}(t)+q(t) y(t)=h(t) \\
y\left(t_{0}\right)=y_{0}, y\left(t_{1}\right)=y_{1}
\end{gathered}
$$

for any numbers y_{0}, y_{1}.

General Method

How to solve

$$
y^{\prime \prime}+p(t) y^{\prime}(t)+q(t) y(t)=h(t)
$$

1) Solve the homogeneous equation

$$
y^{\prime \prime}+p(t) y^{\prime}(t)+q(t) y(t)=0
$$

by:
a) guessing a solution $y_{1}(t)$
b) finding a second, linearly independent solution $y_{2}(t)$

Use the formula

$$
y_{2}(t)=y_{1}(t) \int \frac{e^{-S p(t) d t}}{\left(y_{1}(t)\right)^{2}} d t
$$

General solutions are of the form

$$
z(t)=C_{1} y_{1}(t)+C_{2} y_{2}(t)
$$

b) Use variation of parameters to find a single solution $y_{p}(t)$ to the original equation:

Assume $y_{p}(t)=u(t) y_{1}(t)+v(t) y_{2}(t)$ and that

$$
\begin{aligned}
& v^{\prime}(t) y_{1}(t)+v^{\prime}(t) y_{2}(t)=0 \\
& v^{\prime}(t) y_{1}^{\prime}(t)+v^{\prime}(t) y_{2}^{\prime}(t)=h(t)
\end{aligned}
$$

Solve for u and v (usually using a (computer)
3) Solutions are of the form

$$
y(t)=y_{p}(t)+C_{1} y_{1}(t)+C_{2} y_{2}(t)
$$

Cauchy-Euler Equations
A second order differential equation of the form

$$
t^{2} y^{\prime \prime}+a t y^{\prime}+b y=f(t)
$$

is called a Cauchy-Euler equation. In principle, we know how to solve these! we car always find a solution t^{r} for the homogeneous equation.

